
Geospace System Response to Solar Wind Dynamic Pressure Decrease:  
A case study on 11 June 2017
Dogacan S. Ozturk
Shasha Zou*, James A. Slavin*, Aaron J. Ridley *
* University of Michigan, Climate and Space Sciences and Engineering

contact: dogacan.s.ozturk@jpl.nasa.gov

© 2019 California Institute of Technology. Government sponsorship acknowledged.



j p l . n a s a . g o v

• What are the global changes that 
occur when solar wind dynamic 
pressure decreases?

• How do these global changes 
propagate from Magnetosphere to 
Ionosphere and Thermosphere 
systems?

• What conditions determine the 
geospace system response?

Key Questions of the Study
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Outline of the Talk
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Introduction Methodology Results and 
Discussion Conclusions

• Pressure balance between the solar wind and magnetosphere

• Sudden variations in the solar wind dynamic pressure
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Solar wind determines the shape and size of the Earth’s magnetosphere.

Introduction 1. Pressure balance between solar wind and 
magnetosphere
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dynamic pressure

Earth’s magnetic 
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Magnetosphere –
Ionosphere coupling through 
magnetic field lines.
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Ø Magnetopause deformation à Preliminary Impulse
Ø Magnetospheric vortices à Main Impulse

Introduction 2. Response to sudden variations in 
pressure
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Araki’s SI+ model: Araki’s SI- model:

Signal reversal 
indicates different 

physical 
mechanisms behind 

each perturbation*

Araki and N
agano (1988)

* See references for discussion of source mechanisms

__  morning
…   afternoon
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Outline of the Talk
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Introduction Methodology Results and 
Discussion Conclusions

• Global model of the Magnetosphere-Ionosphere (M-I) System

• Global model of the Ionosphere-Thermosphere (I-T) System

• Event Selection
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• Input: Solar wind plasma parameters, 
IMF vector measurements, F10.7

– Global Magnetosphere (GM): Block 
Adaptive Tree Solarwind Roe Upwind 
Scheme (BATS-R-US)1

– Inner Magnetosphere (IM): Rice 
Convection Model (RCM)2

– Ionospheric Electrodynamics (IE): 
Ridley Ionosphere Model (RIM)3

• Solves for MHD equations (i.e., ideal, 
resistive, Hall)

Methodology-1. Magnetosphere-Ionosphere Model: 
BATS-R-US
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1 Powell et al., 1999; Toth et al., 2005
2 Toffoletto et al., 2003
3 Ridley et al., 2004
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• Solves Navier-Stokes equations on 3D, altitude based non-uniform 
grid, assuming non-hydrostatic solution

• Input: Solar wind plasma parameters, IMF vector measurements, F10.7
– Convection electric field models: Weimer to initialize, RIM 10 s
– Particle precipitation models: AMIE to initialize, RIM 10 s

• Heating: EUV, Joule, auroral, conduction and chemical heating
• Cooling: NO, CO2 and O2 radiative cooling
• Output: Plasma and neutral density, temperature, ion and electron 

velocity, neutral winds
• 4° (longitude) by 1° (latitude) resolution

Methodology-2. Ionosphere-Thermosphere Model: 
GITM
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Ridley, Deng and Toth, JASTP, 2006
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OMNI Solar wind and IMF measurements 
were used to drive simulations.

Methodology-3. Event Selection
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(a)                         (b)

BY turning prior 
to the drop

BZ mostly 
northward 

Nearly constant 
velocity

~ ⁄! " drop in 
density

~ ⁄! # drop in 
pressure
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Outline of the Talk
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Introduction Methodology Results and 
Discussion Conclusions

• Magnetopause motion

• Magnetospheric flow profiles

• Ionospheric Field-Aligned Current (FAC) profiles

• Ion-Neutral Coupling
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Rmp rapidly changes 
from:
• Shue model [Shue et 

al., 1997]: 
8.5 RE to 10 RE

• Density gradient 
[Garcia et al., 2007]: 
8 RE to 10 RE

Results-1. Magnetopause motion at the subsolar point
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• Discontinuity 
moved from 13 
to 5 Re

• Outward motion 
of the mpause

• V1: CCW and 
V2: CW

Results-2. 
Magnetospheric 
Flow: Preliminary 
Phase

5/20/19 12

13 Re

5 Re
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Results-2. 
Magnetospheric 
Flow: Preliminary 
Phase

5/20/19 13

CCW CW

Ø Magnetospheric PI 
vortices was rarely 
reported1.

Ø RCM coupling à
inner 
magnetospheric 
return flows 
contribution to 
vortices

1: Fujita et al., 2012
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• Magnetotail expansion around 1440 
UT, no longer highly stretched by 
1445 UT.

• Magnetopause expansion in y 
direction.

• New set of MI vortices, V3 (CW) 
and V4 (CCW).

• MI vortices rotate opposite sense to 
vortices during dynamic pressure 
enhancement*.

Results-2. Magnetospheric 
Flow: Main Phase
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1
2

* See references for reports of MI vortices.



j p l . n a s a . g o v

(3) and (4) are similar to vortices 
shown by Zhao et al. 

Results-2. Magnetospheric 
Flow: Main Phase
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Zhao et al., 2016
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Vortices (3) and (4) expand and 
propagate towards the magnetotail.

Results-2: Magnetospheric 
Flow – Main Phase
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(a)                (b) 

Results-2. THEMIS observations of magnetospheric flows
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a   b   c

Duskside magnetospheric vortices:
• PI Vortex CCW
• MI Vortex CW
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Magnetotail expansion:
• Drop in BX
• Enhancement in Bz

(a)                (b) 

Results-2. MMS observations of magnetic field signatures
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• Preliminary Response: 1-Upward, 2-Downward
• Main Response: 3-Downward, 4-Upward
• Opposite of FAC profiles during solar wind dynamic pressure enhancement

Results-3. Ionospheric FAC profiles
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BY reversal
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Results-3. Ionospheric FAC profiles with Ground Bperturbation
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    (a) (b)       (c)
MLT=17 MLAT=73°        MLT=12 MLAT=66°        MLT=8 MLAT=71°

Results in agreement with Araki SI- Model
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Denser potential contours à Higher energy flux

Results-3. Ionospheric FAC profiles with Poynting Flux
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• Enhanced ion temperature at 1438 UT (PI), associated with the upward FAC
• Ion convection patterns changed in dawn at 1445 UT.

Results-4. Ion-Neutral Coupling
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Results-4. Ion-Neutral Coupling
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BY reversal
• P1: Enhanced 

particle precipitation 
at dayside

• P2: Change in dawn 
convection pattern 
due to IMF BY
reversal

• Optical brightening 
previously reported 
at dusk during 
negative SI events by 
Sato et al. [2001].
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Results-4. Ion-Neutral Coupling: Winds
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Change in neutral temperature:

~ 320 km/s

~ 20 km/s

• P1: Frictional heat transfer rate 
decreases in time

• P2: Frictional heat transfer rate 
increases in time

• Neutrals respond slowly to changes in 
ionospheric velocity.

~ 100 km/s

~ 90 km/s
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Outline of the Talk
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Introduction Methodology Results Conclusions 
& Discussion 

• What are the global changes that occur when solar wind 
dynamic pressure decreases?

• How do these global changes propagate from Magnetosphere 
to Ionosphere and Thermosphere systems?

• What conditions determine the geospace system response?
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Conclusions
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• What are the global changes that occur when solar wind dynamic 
pressure decreases?
§ Dayside magnetosphere rapidly expanded.
§ Preliminary phase and main phase magnetospheric vortices generated.
§ Vortices propagated towards the magnetotail.

• How do these global changes propagate from Magnetosphere to 
Ionosphere and Thermosphere systems?
§ Each vortex was associated with FACs that are asymmetric between dawn-

dusk.
§ Ion convection patterns and velocities changed due to FACs.

• What conditions determine the geospace system response?
§ Magnetospheric flows and FAC system before the solar wind perturbation
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Questions remaining
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• The first pair of vortices were associated with return flows in the inner 
magnetosphere. 
– What are the factors affecting the magnetospheric vortex generation and 

propagation?
• Ground magnetometer measurements show perturbation prior to the 

event. 
– Can there be a 3-step response?

• The studied case show coupling of perturbation FACs with NBZ current 
system.
– How would the system response change during southward IMF BZ?

• IMF BY reversal had a non-negligible effect on the I-T system.
– How does an idealized response look?
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Back-up Slide-1: The current systems
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Courtesy of Robert L. McPherron

Taken from AMPERE

• Solar wind-Magnetosphere interaction à R1 current systems
• Gradient-curvature drift + R1 currents à R2 currents

Schunk and N
agy, 2009


